
30

Software Testing Methods and
Techniques

Jovanović, Irena

Abstract—In this paper main testing methods and

techniques are shortly described. General
classification is outlined: two testing methods – black
box testing and white box testing, and their frequently
used techniques:

 Black Box techniques: Equivalent
Partitioning, Boundary Value Analysis,
Cause-Effect Graphing Techniques, and
Comparison Testing;

 White Box techniques: Basis Path Testing,
Loop Testing, and Control Structure
Testing.

Also, the classification of the IEEE Computer
Society is illustrated.

1. DEFINITION AND THE GOAL OF TESTING
ROCESS of creating a program consists of
the following phases (see [8]): 1. defining a

problem; 2. designing a program; 3. building a
program; 4. analyzing performances of a
program, and 5. final arranging of a product.
According to this classification, software testing
is a component of the third phase, and means
checking if a program for specified inputs gives
correctly and expected results.
Software testing (Figure 1) is an important
component of software quality assurance, and
many software organizations are spending up to
40% of their resources on testing. For life-critical
software (e.g., flight control) testing can be
highly expensive. Because of that, many studies
about risk analysis have been made. This term
means the probability that a software project will
experience undesirable events, such as
schedule delays, cost overruns, or outright
cancellation (see [9]), and more about this in
[10].
There are a many definitions of software
testing, but one can shortly define that as:1

A process of executing a program with the
goal of finding errors (see [3]). So, testing
means that one inspects behavior of a program
on a finite set of test cases (a set of inputs,
execution preconditions, and expected
outcomes developed for a particular objective,

such as to exercise a particular program path or
to verify compliance with a specific requirement,
see [11]) for which valued inputs always exist.
In practice, the whole set of test cases is
considered as infinite, therefore theoretically
there are too many test cases even for the
simplest programs. In this case, testing could
require months and months to execute. So, how
to select the most proper set of test cases? In
practice, various techniques are used for that,
and some of them are correlated with risk
analysis, while others with test engineering
expertise.

Testing is an activity performed for evaluating
software quality and for improving it. Hence, the
goal of testing is systematical detection of
different classes of errors (error can be defined
as a human action that produces an incorrect
result, see [12]) in a minimum amount of time
and with a minimum amount of effort. We
distinguish (see [2]):

Figure 1: Test Information Flow

P

1 Manuscript received May 26, 2008.
I. M. Jovanovic is with the DIV Inzenjering,

d.o.o., Belgrade

31

 Good test cases - have a good
chance of finding an yet undiscovered
error; and

 Successful test cases - uncovers a
new error.

Anyway, a good test case is one which:
 Has a high probability of finding an

error;
Is not redundant;
 Should be “best of breed”;
 Should not be too simple or too

complex.

2. TESTING METHODS
Test cases are developed using various test
techniques to achieve more effective testing. By
this, software completeness is provided and
conditions of testing which get the greatest
probability of finding errors are chosen. So,
testers do not guess which test cases to chose,
and test techniques enable them to design
testing conditions in a systematic way. Also, if
one combines all sorts of existing test
techniques, one will obtain better results rather if
one uses just one test technique.

Software can be tested in two ways, in
another words, one can distinguish two different
methods:

1. Black box testing, and
2. White box testing.

White box testing is highly effective in

detecting and resolving problems, because bugs
(bug or fault is a manifestation of an error in a
software, see [12]) can often be found before
they cause trouble. We can shortly define this
method as testing software with the knowledge
of the internal structure and coding inside the
program (see [13]). White box testing is also
called white box analysis, clear box testing or
clear box analysis. It is a strategy for software
debugging (it is the process of locating and
fixing bugs in computer program code or the
engineering of a hardware device, see [14]) in
which the tester has excellent knowledge of how
the program components interact. This method
can be used for Web services applications, and
is rarely practical for debugging in large systems
and networks (see [14]). Besides, in [15], white
box testing is considered as a security testing
(the process to determine that an information
system protects data and maintains functionality
as intended, see [6]) method that can be used to

validate whether code implementation follows
intended design, to validate implemented
security functionality, and to uncover exploitable
vulnerabilities (see [15]).

Black box testing is testing software based
on output requirements and without any
knowledge of the internal structure or coding in
the program (see [16]). In another words, a
black box is any device whose workings are not
understood by or accessible to its user. For
example, in telecommunications, it is a resistor
connected to a phone line that makes it
impossible for the telephone company’s
equipment to detect when a call has been
answered. In data mining, a black box is an
algorithm that doesn’t provide an explanation of
how it works. In film–making, a black box is a
dedicated hardware device: equipment that is
specifically used for a particular function, but in
the financial world, it is a computerized trading
system that doesn’t make its rules easily
available.

In recent years, the third testing method has
been also considered – gray box testing. It is
defined as testing software while already having
some knowledge of its underlying code or logic
(see [17]). It is based on the internal data
structures and algorithms for designing the test
cases more than black box testing but less than
white box testing. This method is important
when conducting integration testing between two
modules of code written by two different
developers, where only interfaces are exposed
for test. Also, this method can include reverse
engineering to determine boundary values. Gray
box testing is non-intrusive and unbiased
because it doesn’t require that the tester have
access to the source code.

The main characteristics and comparison
between white box testing and black box testing
are follows.

2.1. Black Box Testing Versus White Box
Testing

Black Box Testing:
 Performing the tests which exercise all

functional requirements of a program;
 Finding the following errors:

1. Incorrect or missing functions;
2. Interface errors;
3. Errors in data structures or

external database access;
4. Performance errors;

1 Manuscript received May 26, 2008.
I. M. Jovanovic is with the DIV Inzenjering,
d.o.o., Belgrade (e-mail: irenaire@gmail.com).

32

5. Initialization and termination
errors.

 Advantages of this method:
 The number of test cases are

reduced to achieve reasonable
testing;

 The test cases can show
presence or absence of classes
of errors.

White Box Testing:
 Considering the internal logical

arrangement of software;
 The test cases exercise certain sets of

conditions and loops;
 Advantages of this method:

 All independent paths in a
module will be exercised at least
once;

 All logical decisions will be
exercised;

 All loops at their boundaries will
be executed;

 Internal data structures will be
exercised to maintain their
validity.

3. GENERAL CLASSIFICATION OF
TEST TECHNIQUES

In this paper, the most important test
techniques are shortly described, as it is shown
in Figure 2.

Figure 2: General Classification of Test

Techniques

3.1. Equivalence Partitioning
Summary: equivalence class

This technique divides the input domain of a

program onto equivalence classes.
Equivalence classes – set of valid or invalid

states for input conditions, and can be defined in
the following way:

1. An input condition specifies a range →
one valid and two invalid equivalence
classes are defined;

2. An input condition needs a specific
value → one valid and two invalid
equivalence classes are defined;

3. An input condition specifies a member
of a set → one valid and one invalid
equivalence class are defined;

4. An input condition is Boolean → one
valid and one invalid equivalence class
are defined.

Well, using this technique, one can get test
cases which identify the classes of errors.

3.2. Boundary Value Analysis
Summary: complement equivalence

partitioning

This technique is like the technique
Equivalence Partitioning, except that for creating
the test cases beside input domain use output
domain.

One can form the test cases in the following
way:

1. An input condition specifies a range
bounded by values a and b → test
cases should be made with values just
above and just below a and b,
respectively;

2. An input condition specifies various
values → test cases should be
produced to exercise the minimum and
maximum numbers;

3. Rules 1 and 2 apply to output
conditions;

If internal program data structures have
prescribed boundaries, produce test cases to
exercise that data structure at its boundary.

3.3. Cause-Effect Graphing Techniques
Summary: translate

TESTING

Black Box White Box

Equivalent Partitioning

Boundary Value
Analysis

Cause-Effect Graphing
Techniques

Comparison Testing

Basis Path Testing

Loop Testing

Control Structure
Testing

Model-based testing

Fuzz Testing

33

One uses this technique when one wants to
translate a policy or procedure specified in a
natural language into software’s language.

This technique means:
Input conditions and actions are listed for a

module ⇒ an identifier is allocated for each
one of them ⇒ cause-effect graph is created
⇒ this graph is changed into a decision table
⇒ the rules of this table are modified to test
cases.

3.4. Comparison Testing
Summary: independent versions of an

application

In situations when reliability of software is
critical, redundant software is produced. In that
case one uses this technique.

This technique means:
Software engineering teams produce

independent versions of an application → each
version can be tested with the same test data →
so the same output can be ensured.

Residual black box test techniques are
executing on the separate versions.

3.5. Fuzz Testing
Summary: random input

Fuzz testing is often called fuzzing,

robustness testing or negative testing. It is
developed by Barton Miller at the University of
Wisconsin in 1989. This technique feeds random
input to application. The main characteristic of
fuzz testing, according to the [26] are:

 the input is random;
 the reliability criteria: if the application

crashes or hangs, the test is failed;
 fuzz testing can be automated to a

high degree.
A tool called fuzz tester which indicates

causes of founded vulnerability, works best for
problems that can cause a program to crash
such as buffer overflow, cross-site scripting,
denial of service attacks, format bug and SQL
injection. Fuzzing is less effective for spyware,
some viruses, worms, Trojans, and keyloggers.
However, fuzzers are most effective when are
used together with extensive black box testing
techniques.

3.6. Model-based testing

Model-based testing is automatic generation
of efficient test procedures/vectors using models
of system requirements and specified
functionality (see [27]).
In this method, test cases are derived in whole
or in part from a model that describes some
aspects of the system under test. These test
cases are known as the abstract test suite, and
for their selection different techniques have been
used:

 generation by theorem proving;
 generation by constraint logic

programming;
 generation by model checking;
 generation by symbolic execution;
 generation by using an event-flow

model;
 generation by using an Markov chains

model.
Model-based testing has a lot of benefits

(according [28]):
 forces detailed understanding of the

system behavior;
 early bug detection;
 test suite grows with the product;
 manage the model instead of the

cases;
 can generate endless tests;
 resistant to pesticide paradox;
 find crashing and non-crashing bugs;
 automation is cheaper and more

effective;
 one implementation per model, then

all cases free;
 gain automated exploratory testing;
 testers can address bigger test

issues.

3.7. Basis Path Testing
Summary: basis set, independent path, flow

graph, cyclomatic complexity, graph matrix, link
weight

If one uses this technique, one can evaluate
logical complexity of procedural design. After
that, one can employ this measure for
description basic set of execution paths.

For obtaining the basis set and for

34

presentation control flow in the program, one
uses flow graphs (Figure 3 and Figure 4). Main
components of that graphs are:

 Node – it represents one or more
procedural statements. Node which
contains a condition is called predicate
node.

 Edges between nodes – represent flow
of control. Each node must be bounded
by at least one edge, even if it does not
contain any useful information.

Region – an area bounded by nodes and
edges.

Figure 3: Flow Graph

Cyclomatic Complexity is software metric.

The value evaluated for cyclomatic complexity
defines the number of independent paths in the
basis set of a program.

Independent path is any path through a
program that introduces at least one new set of
processing statements.
 For the given graph G, cyclomatic complexity
V(G) is equal to:

1. The number of regions in the flow graph;
2. V(G) = E - N + 2, where E is the number

of edges, and N is the number of nodes;
V(G) = P + 1, where P is the number of

predicate nodes.
So, the core of this technique is: one draws

the flow graph according to the design or code
like the basis ⇒ one determines its cyclomatic
complexity; cyclomatic complexity can be
determined without a flow graph → in that case
one computes the number of conditional
statements in the code ⇒ after that, one
determines a basis set of the linearly
independent paths; the predicate nodes are

useful when necessary paths must be
determined ⇒ at the end, one prepares test
cases by which each path in the basis set will be
executed. Each test case will be executed and
compared to the expected results.

Sequence

IF

While

Repeat

Case

Figure 4: Different Versions of Flow Graphs

35

Example1. (cyclomatic complexity)

Figure 5: Graph for Example 1.

The cyclomatic complexity for the upper graph

(figure 5) is:
o V(G) = the number of predicate nodes

+1 = 3+1 =4, or
o V(G)= the number of simple decisions

+1 = 4.
Well, V(G) = 4, so there are four independent

paths:
The path 1: 1, 2, 3, 6, 7, 8
The path 2: 1, 2, 3, 5, 7, 8;
The path 3: 1, 2, 4, 7, 8;
The path 4: 1,2,4,7,2,4,…,7,8.
Now, test cases should be designed to

exercise these paths.

Example2. (cyclomatic complexity)

Cyclomatic complexity for graph which is
represented in Figure 6 is:
V(G) = E – N + 2 = 17 – 13 + 2 = 6.
So, the basis set of independent paths is:

1-2-10-11-13;
1-2-10-12-13;
1-2-3-10-11-13;
1-2-3-4-5-8-9-2;
1-2-3-4-5-6-8-9-2;
1-2-3-4-5-6-7-8-9-2.

Figure 6: Graph for Example 2.

Example3.

Here are presented corresponding graph matrix
and connection matrix for graph which is
depicted in Figure 7.

Figure 7: Graph for Example 3.

1

2

4

3 5

a

b

c
d

e

f

g

1

5

4

6

3

2

7 8

9

10

12 11

13

1

5 6

4

8

2

3

7

36

Table 1: Graph Matrix
node 1 2 3 4 5

1 a

2 b

3 d, c f

4

5 e g

Table 2: Connection Matrix
node 1 2 3 4 5 connections

1 1 1-1=0

2 1 1-1=0

3 1,1 1 3-1=2

4 0

5 1 1
2-1=1

Cyclomatic complexity is 2+1=3

3.8. Loop Testing
There are four types of loops:

1. Simple loops;
2. Concatenated loops;
3. Nested loops;
4. Unstructured loops.

3.8.1. Simple Loops

It is possible to execute the following tests:
 Skip the loop entirely;
 Only one pass through the loop;
 Two passes through the loop;
 m passes through the loop where m<n;
 n-1, n, n+1 passes through the loop,
 where n is the maximum number of
 allowable passes through the loop.

A typical simple loop is depicted in Figure 8.

Figure 8: Simple Loop

3.8.2. Nested Loops
If one uses this type of loops, it can be

possible that the number of probable tests
increases as the level of nesting grows. So, one
can have an impractical number of tests. To
correct this, it is recommended to use the
following approach:

 Start at the innermost loop, and set all
other loops to minimum values;

 Conduct simple loop tests for the
innermost loop and holding the outer
loop at their minimum iteration
parameter value;

 Work outward, performing tests for the
next loop;

 Continue until all loops have been
tested.

A typical nested loop is depicted in Figure 9.

Figure 9: Nested Loop

3.8.3. Concatenated Loops

These loops are tested using simple loop tests
if each loop is independent from the other. In
contrary, nested loops tests are used.

A typical concatenated loop is presented in
Figure 10.

37

Figure 10: Concatenated Loop

3.8.4. Unstructured Loops
This type of loop should be redesigned.
A typical unstructured loop is depicted in

Figure 11.

Figure 11: Unstructured Loop

3.9. Control Structure Testing
Two main components of classification of

Control Structure Testing (Figure 12) are
described below.

Figure 12: Classification of Control Structure

Testing

3.9.1. Condition Testing
By this technique, each logical condition in a

program is tested.

A relational expression takes a form:

21 E>operatorrelational<E - ,
Where E1 and E2 are arithmetic expressions,
and relational operator is one of the following: <,
=, ≤≠, , >, or ≥ .

A simple condition is a Boolean variable or a
relational expression, possibly with one NOT
operator.

A compound condition is made up of two or
more simple conditions, Boolean operators, and
parentheses.

This technique determines not only errors in
the conditions of a program but also errors in the
whole program.

3.9.2. Data Flow Testing

By this technique, one can choose test paths
of a program based on the locations of
definitions and uses of variables in a program.

Unique statement number is allocated for
each statement in a program. For statement with
S as its statement number, one can define:

DEF(S) = {X| statement S contains a definition
of X}

USE(S) = {X| statement S contains a use of
X}.

The definition of a variable X at statement S is
live at statement S’ if there exists a path from
statement S to S’ which does not contain any
condition of X.

A definition-use chain (or DU chain) of
variable X is of the type [X, S, S’] where S and
S’ are statement numbers, X is in DEF(S),
USE(S’), and the definition of X in statement S is
live at statement S’.

One basic strategy of this technique is that
each DU chain be covered at least once.

4. Test Techniques According to

the Project of the IEEE Computer
Society, 2004.

The IEEE Computer Society is established to
promote the advancements of theory and
practice in the field of software engineering.

This Society completed IEEE Standard 730
for software quality assurance (it is any
systematic process of checking to see whether a
product or service being developed is meeting
specified requirements, see [18]) in the year
1979. This was the first standard of this Society.
The purpose of IEEE Standard 730 was to
provide uniform, minimum acceptable

Control Structure Testing

Condition Testing

Data Flow Testing

38

requirements for preparation and content of
software quality assurance plans. Another, new
standards are developed in later years.

These standards are meaningful not only for
promotion software requirements, software
design and software construction, but also for
software testing, software maintenance,
software configuration management and
software engineering management.

So, for improving software testing and for
decreasing risk on all fields, there is
classification of test techniques according to this
Society, which is listed below.

 Based on the software engineer’s
intuition and experience:

1. Ad hoc testing – Test cases are
developed basing on the software
engineer’s skills, intuition, and
experience with similar programs;

2. Exploratory testing – This testing is
defined like simultaneous learning,
which means that test are dynamically
designed, executed, and modified.

 Specification-based techniques:
1. Equivalence partitioning;
2. Boundary-value analysis;
3. Decision table – Decision tables

represent logical relationships between
inputs and outputs (conditions and
actions), so test cases represent every
possible combination of inputs and
outputs;

4. Finite-state machine-based – Test
cases are developed to cover states and
transitions on it;

5. Testing from formal specifications –
The formal specifications (the
specifications in a formal language)
provide automatic derivation of
functional test cases and a reference
output for checking test results;

6. Random testing – Random points are
picked within the input domain which
must be known, so test cases are based
on random.

 Code-based techniques:
1. Control-flow-based criteria –

Determine how to test logical
expressions (decisions) in computer
programs (see [19]). Decisions are
considered as logical functions of
elementary logical predicates
(conditions) and combinations of

conditions’ values are used as data for
testing of decisions. The definition of
every control-flow criteria includes a
statement coverage requirement as a
component part: every statement in the
program has been executed at least
once. Control–flow criteria are
considered as program-based and
useful for white-box testing. For control-
flow criteria, the objects of investigation
have been relatively simple: Random
Coverage, Decision Coverage (every
decision in the program has taken all
possible outcomes at least once),
Condition Coverage (every condition in
each decision has taken all possible
outcomes at least once),
Decision/Condition Coverage (every
decision in the program has taken all
possible outcomes at least once and
every condition in each decision has
taken all possible outcomes at least
once) , etc.

2. Data flow-based criteria
3. Reference models for code-based

testing – This means that the control
structure of a program is graphically
represented using a flow graph.

 Fault-based techniques:
1. Error guessing – Test cases are

developed by software engineers trying
to find out the most frequently faults in a
given program. The history of faults
discovered in earlier projects and the
software engineer’s expertise are helpful
in this situations;

2. Mutation testing - A mutant is a
modified version of the program under
test. It is differing from the program by a
syntactic change. Every test case
exercises both the original and all
generated mutants. Test cases are
generating until enough mutants have
been killed or test cases are developed
to kill surviving mutants.

 Usage-based techniques:
1. Operational profile – From the

observed test results, someone can
infer the future reliability of the software;

2. Software Reliability Engineered
Testing.

 Techniques based on the nature of the
application:

39

1. Object-oriented testing – By this test
technique we can find where the
element under test does not perform as
specified. Besides, the goal of this
technique is to select, structure and
organize the tests to find the errors as
early as possible (see [25]).

2. Component-based testing – Is based
on the idea of creating test cases from
highly reusable test components. A test
component is a reusable and context-
independent test unit, providing test
services through its contract-based
interfaces. More about this test
technique on:
http://www.componentbasedtesting.org/
site/.

3. Web-based testing – Is a computer-
based test delivered via the internet and
written in the “language” of the internet,
HTML and possibly enhanced by
scripts. The test is located as a website
on the tester’s server where it can be
accessed by the test-taker’s computer,
the client. The client’s browser software
(e.g. Netscape Navigator, MS Internet
Explorer) displays the test, the test-taker
completes it, and if so desired sends
his/her answers back to the server, from
which the tester can download and
score them (see [20]).

4. GUI testing – Is the process of testing a
product that uses a graphical user
interface, to ensure it meets its written
specifications (see [6]).

5. Testing of concurrent programs;
6. Protocol conformance testing – A

protocol describes the rules with which
computer systems have to comply in
their communication with other
computer systems in distributed
systems (see [23]). Protocol
conformance testing is a way to check
conformance of protocol
implementations with their
corresponding protocol standards, and
an important technology to assure
successful interconnection and
interoperability between different
manufacturers (see [24]). Protocol
conformance testing is mostly based on
the standard ISO 9646: “Conformance
Testing Methodology and Framework”

[ISO 91]. However, this conventional
method of standardization used for
protocol conformance test, sometimes
gives wrong test result because the test
is based on static test sequences.

7. Testing of real-time systems – More
than one third of typical project
resources are spent on testing
embedded and real-time systems. Real-
time and embedded systems require
that a special attention must be given to
timing during testing. According to the
[21], real-time testing is defined as
evaluation of a system (or its
components) at its normal operating
frequency, speed or timing. But, it is
actually a conformance testing, which
goal is to check whether the behavior of
the system under test is correct
(conforming) to that of its specification
(see [22]). Test cases can be generated
offline or online. In the first case, the
complete test scenarios and verdict are
computed a-priori and before execution.
The offline test generation is often
based on a coverage criterion of the
model, on a test purpose or a fault
model. Online testing combines test
generation and execution.

8. Testing of safety-critical systems.
 Selecting and combining techniques:
1. Functional and structural;
2. Deterministic vs. random - Test cases

can be selected in a deterministic way
or randomly drawn from some
distribution of inputs, such as is in
reliability testing.

5. CONCLUSION
Software testing is a component of software

quality control (SQC). SQC means control the
quality of software engineering products, which
is conducting using tests of the software system
(see [6]). These tests can be: unit tests (this
testing checks each coded module for the
presence of bugs), integration tests
(interconnects sets of previously tested modules
to ensure that the sets behave as well as they
did as independently tested modules), or system
tests (checks that the entire software system
embedded in its actual hardware environment
behaves according to the requirements

http://www.componentbasedtesting.org/site/�
http://www.componentbasedtesting.org/site/�

40

document). SQC also includes formal check of
individual parts of code, and the review of
requirements documents.

SQC is different from software quality
assurance (SQA), which means control the
software engineering processes and methods
that are used to ensure quality (see [6]). Control
conduct by inspecting quality management
system. One or more standards can be used for
that. It is usually ISO 9000. SQA relates to the
whole software development process, which
includes the following events: software design,
coding, source code control, code reviews,
change management, configuration
management, and release management.

Finally, SQC is a control of products, and SQA
is a control of processes.

Eventual bugs and defects reduce application
functionality, do not look vocational, and disturb
company’s reputation. Thence, radically testing
is very important to conduct. At that way, the
defects can be discovered and repaired. Even if
customers are dissatisfied with a product, they
will never recommend that product, so product’s
cost and its popularity at the market will
decrease.

Besides, customer testing is also very
important to conduct. Through this process one
can find out if application’s functions and
characteristics correspond to customers, and
what should be changed in application to
accommodate it according to customer’s
requests.

Large losses can be avoided if timely testing
and discovering bugs in initial phases of testing
are conducting. Deficits are minor if the bugs are
discovered by testing within the company, where
developers can correct errors rather than if the
bugs are discovered in the phase of customer
testing, or when the application is started “live”
in some other company or system for which the
application is created. In that case, the losses
can be enormous.

Therefore software testing is greatly
important, and test techniques too, because they
have the aim to improve and make easier this
process.

There is considerable controversy between
software testing writers and consultants about
what is important in software testing and what
constitutes responsible software testing.

So, some of the major controversies include:

 What constitutes responsible
software testing? – Members of the
“context-driven” school of testing believe
that the “best practices” of software
testing don’t exist, but that testing is a
collection of skills which enable testers
to chose or improve test practices
proper for each unique situation. Others
suppose that this outlook directly
contradicts standards such as IEEE 829
test documentation standard, and
organizations such as Food and Drug
Administration who promote them.

 Agile vs. traditional – Agile testing is
popular in commercial circles and
military software providers. Some
researchers think that testers should
work under conditions of uncertainly and
constant change, but others think that
they should aim to at process “maturity”.

 Exploratory vs. scripted – Some
researchers believe that tests should be
created at time when they are executed,
but others believe that they should be
designed beforehand.

 Manual vs. automated – Propagators
of agile development recommend
complete automation of all test cases.
Others believe that test automation is
pretty expensive.

 Software design vs. software
implementation – The question is:
Should testing be carried out only at the
end or throughout the whole process?

 Who watches the watchmen – Any
form of observation is an interaction, so
the act of testing can affect an object of
testing.

41

REFERENCES

[1] http://www.his.sunderland.ac.uk/~cs0mel/comm83wk5.
doc, February 08, 2009.

[2] Stacey, D. A., “Software Testing Techniques”
[3] Guide to the Software Engineering Body of Knowledge,

Swebok – A project of the IEEE Computer Society
Professional Practices Committee, 2004.

[4] “Software Engineering: A Practitioner’s Approach, 6/e;
Chapter 14: Software Testing Techniques”, R.S.
Pressman & Associates, Inc., 2005.

[5] Myers, Glenford J., IBM Systems Research Institute,
Lecturer in Computer Science, Polytechnic Institute of
New York, “The Art of Software Testing”, Copyright
1979. by John Wiley & Sons, Inc.

[6] Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/

[7] http://www2.umassd.edu/CISW3/coursepages/pages/CI
S311/outline.html

[8] Parezanovic, Nedeljko, “Racunarstvo i informatika”,
Zavod za udzbenike i nastavna sredstva – Beograd,
1996.

[9] Wei–Tek, Tsai, “Risk – based testing”, Arizona State
University, Tempe, AZ 85287

[10] Redmill, Felix, “Theory and Practice of Risk-based
Testing”, Software Testing, Verification and Reliability,
Vol. 15, No. 1, March 2005.

[11] IEEE, “IEEE Standard Glossary of Software
Engineering Terminology” (IEEE Std 610.12-1990), Los
Alamitos, CA: IEEE Computer Society Press, 1990.

[12] http://www.testingstandards.co.uk/living_glossary.htm#
Testing, February 08, 2009.

[13] http://www.pcmag.com/encyclopedia_term/0,2542,t=wh
ite+box+testing&i=54432,00.asp, February 08, 2009.

[14] http://searchsoftwarequality.techtarget.com/sDefinition/
0,,sid92_gci1242903,00.html, February 08, 2009.

[15] Janardhanudu, Girish, “White Box Testing”,
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/white-box/259-BSI.html, February 08, 2009.

[16] http://www.pcmag.com/encyclopedia_term/0,2542,t=bla
ck+box+testing&i=38733,00.asp, February 08, 2009.

[17] http://www.pcmag.com/encyclopedia_term/0,2542,t=gra
y+box+testing&i=57517,00.asp, February 08, 2009.

[18] http://searchsoftwarequality.techtarget.com/sDefinition/
0,,sid92_gci816126,00.html, February 08, 2009.

[19] Vilkomir, A, Kapoor, K & Bowen, JP, “Tolerance of
Control-flow testing Criteria”, Proceedings 27th Annual
International Computer Software and applications
Conference, 3-6 November 2003, 182-187, or
http://ro.uow.edu.au/infopapers/88

[20] http://www2.hawaii.edu/~roever/wbt.htm, February 08,
2009.

[21] http://www.businessdictionary.com/definition/real-time-
testing.html, February, 2009.

[22] Mikucionis, Marius, Larsen, Kim, Nielsen, Brian, “Online
On-the-Fly Testing of Real-time systems”,
http://www.brics.dk/RS/03/49/BRICS-RS-03-49.pdf,
February, 2009.

[23] Tretmans, Jan, “An Overview of OSI Conformance
Testing”, http://www.cs.aau.dk/~kgl/TOV03/iso9646.pdf

[24] http://www.ifp.uiuc.edu/~hning2/protocol.htm, February
2009.

[25] http://it.toolbox.com/blogs/enterprise-solutions/better-
object-oriented-testing-21288, February 2009.

[26] http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html, February,
2009.

[27] http://www.goldpractices.com/practices/mbt/index.php,
February, 2009.

[28] http://blogs.msdn.com/nihitk/pages/144664.aspx,
February, 2009.

http://www.his.sunderland.ac.uk/~cs0mel/comm83wk5.doc�
http://www.his.sunderland.ac.uk/~cs0mel/comm83wk5.doc�
http://www2.umassd.edu/CISW3/coursepages/pages/CIS311/outline.html�
http://www2.umassd.edu/CISW3/coursepages/pages/CIS311/outline.html�
http://www.testingstandards.co.uk/living_glossary.htm#Testing�
http://www.testingstandards.co.uk/living_glossary.htm#Testing�
http://www.pcmag.com/encyclopedia_term/0,2542,t=white+box+testing&i=54432,00.asp�
http://www.pcmag.com/encyclopedia_term/0,2542,t=white+box+testing&i=54432,00.asp�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1242903,00.html�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1242903,00.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/white-box/259-BSI.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/white-box/259-BSI.html�
http://www.pcmag.com/encyclopedia_term/0,2542,t=black+box+testing&i=38733,00.asp�
http://www.pcmag.com/encyclopedia_term/0,2542,t=black+box+testing&i=38733,00.asp�
http://www.pcmag.com/encyclopedia_term/0,2542,t=gray+box+testing&i=57517,00.asp�
http://www.pcmag.com/encyclopedia_term/0,2542,t=gray+box+testing&i=57517,00.asp�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci816126,00.html�
http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci816126,00.html�
http://ro.uow.edu.au/infopapers/88�
http://www2.hawaii.edu/~roever/wbt.htm�
http://www.businessdictionary.com/definition/real-time-testing.html�
http://www.businessdictionary.com/definition/real-time-testing.html�
http://www.brics.dk/RS/03/49/BRICS-RS-03-49.pdf�
http://www.cs.aau.dk/~kgl/TOV03/iso9646.pdf�
http://www.ifp.uiuc.edu/~hning2/protocol.htm�
http://it.toolbox.com/blogs/enterprise-solutions/better-object-oriented-testing-21288�
http://it.toolbox.com/blogs/enterprise-solutions/better-object-oriented-testing-21288�
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html�
http://www.goldpractices.com/practices/mbt/index.php�
http://blogs.msdn.com/nihitk/pages/144664.aspx�

